24 марта 2022, 08:26
Статья на конкурс "Био/Мол/Текст": Все знают, что CHON крайне важны для всего живого на Земле. Но задумывались ли вы о том, какую роль в работе нашего тела играют другие элементы? Для интеграции в организм каждого из них требуется свой полноценный путь метаболизма, который включает уникальные системы потребления, транспорта, хранения и т.д. Об одном таком элементе — о железе — сейчас и пойдет речь. 
Конкурс "Био/Мол/Текст"-2021/2022
Эта работа опубликована в номинации "Школьная" конкурса "Био/Мол/Текст"-2021/2022.



Железо
В человеческом теле около 3,72 × 1013 клеток [2], сколько в нас молекул — сложно представить, а о количестве атомов даже и говорить не стоит. Удивительно, но это невообразимое число при классификации можно свести всего к паре десятков химических элементов. О некоторых, например: углероде, водороде и кислороде, и так все известно любому человеку, когда-то окончившему школу. Они присутствуют почти во всех органических веществах. А есть элементы, о которых ты вроде слышал, но даже до конца и не уверен, что они есть в твоем организме. Ну да, железо, что-то про кровь, про перенос кислорода. Но наше тело — очень сложный механизм, поэтому даже с таким "непопулярным" микроэлементом, которого в каждом из нас всего по несколько грамм, обращается очень замысловато. Давайте разбираться.Пару слов
В среднем в организме человека содержится от 2 до 4 граммов железа [3]. Казалось бы, немного, но и этого небольшого количества хватает для осуществления всего огромного спектра его функций. Но для их понимания сначала стоит объяснить немного химии: Железо — это d-элемент восьмой группы четвертого периода, поэтому оно может наблюдаться в разных степенях окисления. В теле млекопитающего железо представлено в виде двух ионов: Fe2+ (железо двухвалентное) и Fe3+ (железо трехвалентное). При получении электрона Fe3+ переходит в Fe2+, обратный переход тоже возможен. Отдельные молекулы железа потенциально токсичны, поскольку в аэробных условиях они катализируют распространение активных форм кислорода и генерацию высокореактивных радикалов, таких как OH–. Так что в теле человека они не встречаются в свободном виде и спрятаны в различные структуры для использования, транспорта и хранения.Для чего вообще нужно железо?
Двумя словами — функционал огромен. В первую очередь, железо входит во всем известные соединения, связывающие кислород: гемоглобин в эритроцитах и миоглобин в мышцах, на синтез которых и уходит основная часть запасов микроэлемента. Кроме того, железо является компонентом большого числа жизненно необходимых ферментов, например каталаз и пероксидаз, и разнообразных по функциям белков-цитохромов. Железо проявляет 2 степени окисления, следовательно, оно может участвовать в окислительно-восстановительных реакциях, что собственно и делает практически во всех указанных соединениях. Именно поэтому железо почти всегда встречается в реакционных центрах белков и в составе, так называемых, гемов, о которых мы поговорим чуть позже.Потребление и выделение
Две трети железа в организме человека содержится в уже упомянутом гемоглобине [4], железопротеине, который используется для переноса кислорода красными кровяными тельцами — эритроцитами. Эритроцит, к сожалению или счастью, как и любая другая клетка человеческого тела, не живет вечно и имеет ограниченный срок жизни ( Life Span), составляющий примерно 111 дней [5], [6]. После смерти клетка поглощается специальными макрофагами в селезенке или печени, а содержащийся в нем гемоглобин "переваривается" и железо вновь ступает на свой метаболический путь: накапливается в теле или сразу идет в красный костный мозг к предшественникам эритроцитов. На этом моменте возникает логичный вопрос: если метаболизм железа в человеческом теле зациклен, зачем нужно поступление нового железа? Дело в том, что кровотечения и отшелушивания слизистых и кожных покровов, которые являются частью и нормальной жизнедеятельности организма, все же приводят к потерям микроэлемента. Именно поэтому небольшое количество железа должно ежедневно поступать в организм вместе с пищей. По статистике, для человека с "европейским образом питания" это количество равно 15 мг, из которых усваивается только 10–15%, то есть 1,5–2,5 мг [7], [8]. Число действительно крошечное по сравнению с целыми граммами железа в здоровом организме. Интересно, что у взрослых людей оно может быть намного меньше. Для нормального функционирования и профилактики заболеваний, хватит и 6,7 мг железа для мужчин и 11,4 мг для женщин [8]. Если человек ежедневно потребляет пищу с повышенным содержанием железа, почему у него тогда не развивается какая-нибудь болезнь? Или как развивается дефицит железа в организме, если его так много в пище? Эти и другие вопросы мы обсудим чуть позже при обсуждении регуляции метаболизма. Гемы и не гемы С негемовым железом все просто: это свободные ионы железа, не входящие в органические соединения. А гемовое железо, как нетрудно догадаться, находится в составе гема — сложного соединения с двухвалентным ионом внутри порфиринового кольца (см. рис. 1.). Порфирин — это тетрапиррол, основная часть гема, окружающая ион железа. Гемовое железо входит в состав гемопротеинов (буквально: белков, содержащих гем), таких как гемоглобин и миоглобин.
Продукты
Негемовое железо составляет большинство потребляемого за день железа и преимущественно содержится в растительной пище, такой как бобы, злаки и темные зеленые части листовых овощей [9]. Например, листья известной восточной приправы пажитника имеют огромную концентрацию железа: 2,4 миллиграмма на 100 грамм продукта (для сравнения яблоко содержит только ~ 0,9 мг/100 г). Большим содержанием негемового железа также отличаются орехи — около 1,3 мг/100 г [10]. Этот тип железа содержится и в животной пище. В теле животного железо аккумулируется в составе запасающего белка печени — ферритина, о котором мы еще будем говорить позже, поэтому печень — богатый источник негемового железа (2,7–8,3 мг/100 г) [11], [12]. Гемовое железо легче усваивается организмом: в норме абсорбируется 20–30% [13]. В основном оно представлено в виде составной части гемоглобина и миоглобина, поэтому содержится в продуктах животного происхождения [14], в особенности с высоким содержанием крови [13]. Больше всего такого железа содержится в мышечной ткани (1–3,5 мг/100 г) и почках животных (5–18 мг/100 г) [11]. Как мы можем видеть, железо присутствует в большом количестве повседневных продуктов питания, а специальных систем его вывода из человеческого тела не существует. Следовательно, для поддержания постоянной концентрации железа организму нужно уметь грамотно контролировать его поступление. Чтобы понять, как это происходит, нужно разобраться с тем, как железо вообще попадает в организм.Метаболизм железа
Абсорбция
В силу своей химической природы свободный ион железа может быть в двух степенях окисления. Однако так эволюционно сложилось, что для организма не выгодно делать два аналогичных пути метаболизма, поэтому уже при поглощении железо унифицируется и поступает только в виде Fe2+. Как это происходит? Довольно банально. Сначала все свободное железо просто окисляется до степени окисления 3+, а затем восстанавливается при поглощении до 2+. Гемовое железо уже находится в нужной форме (см. рис. 2). Теперь чуть подробней.
- Пойти в расход на нужды энтероцита, то есть вступить во внутриклеточный синтез.
- Если первый вариант не актуален и у клетки нет нужды в синтезе железосодержащих соединений, то запастись там же в составе белка ферритина, о котором мы еще поговорим.
- Когда клеточных запасов будет достаточно, уйти в открытое плавание в кровоток для использования другими клетками организма.

- Железо высвобождается из соединений в пище с помощью протеаз и соляной кислоты. Соляная кислота желудочного сока может восстанавливать железо до Fe2+.
- Свободные гемы попадают в клетку с помощью белкового переносчика гемов — 1 (HCP-1), расположенного в энтероцитах тощей кишки.
- Внутри клетки гем диссоциирует на протопорфирин и двухвалентное железо благодаря гем оксигеназе.
- Негемовое железо может реагировать с ингибиторами ее всасывания в тонкой кишке, такими как полифенолы или щелочной pH, которые стимулируют фекальный вывод железа.
- Редуктаза (например цитохром B) восстанавливает свободное трехвалентное железо до двухвалентной формы.
- DMT1 переносит свободное двухвалентное железо внутрь энтероцита.
- Fe2+ из свободного и гемового железа связывается с белками-переносчиками в цитозоле клетки кишки и либо используется клеткой, либо направляется в кровоток, либо на хранение в составе ферритина.
- Ферропортин транспортирует двухвалентное железо сквозь базолатеральную мембрану энтероцита, после чего оно окисляется гефестином до трехвалентного состояния.
- Две молекулы Fe3+ связываются с апотрансферрином с образованием трансферрина, который направляется к тканям организма через кровоток.
Регуляция абсорбции
Как вы поняли, абсорбция железа — это сложный многоступенчатый процесс, поэтому она может контролироваться на разных этапах и разными факторами. Во-первых, активность абсорбции напрямую зависит от концентрации железа в межклеточном веществе вокруг энтероцитов, поэтому после приема пищи, богатой железом, ее интенсивность может резко упасть даже при дефиците микроэлемента в организме [15]. Во-вторых, абсорбция, как и другие этапы метаболизма железа, может регулироваться организмом совершенно на разных уровнях. На поступление нового железа из кишечника влияют внутренние органы, которые могут стимулировать абсорбцию железа при недостатке микроэлемента с помощью гормона гепсидина, о котором речь пойдет позже . В частности, этим занимается печень: в ней железо запасается в виде составной части ферритина. В-третьих, существуют отдельные уникальные регуляторные вещества, воздействующие на процесс поглощения либо гемового, либо негемового железа. Их делят на стимуляторы и ингибиторы в зависимости от своей функции. Стимуляторы и ингибиторы абсорбцииСтимуляторы абсорбции
Стимуляторы абсорбции — это соединения, которые увеличивают интенсивность абсорбции в кишечнике. Наиболее известный и самый мощный стимулятор абсорбции негемового железа — аскорбиновая кислота, или витамин C. Многие животные могут ее синтезировать, но приматам приходиться добывать ее с пищей. Дело в том, что витамин C присутствует в обилии в рационе приматов, в особенности в цитрусах и фруктах, поэтому организм не утруждает себя его синтезом. Как вы помните, аскорбиновая кислота восстанавливает трехвалентное железо, поэтому при ее избытке большее количество негемового железа способно поступить в энтероциты. Некоторые другие органические кислоты выполняют такую же функцию [17]. Но на этом эффективные стимуляторы абсорбции не кончаются:- Заменимая аминокислота цистеин. По сути тоже является органической кислотой. Входит в состав альфа-кератинов, участвует в синтезе коллагена и, соответственно, необходима для роста производных кожи: ногтей и волос. Содержится в больших количествах в красном перце и других продуктах растительного происхождения [18], [19].
- Синтезируемый в теле человека трипептид глутатион , в состав которого входит и цистеин. Глутатион — это антиоксидант, вступающий в реакцию со свободными радикалами кислорода в клетке [19]. Большим содержанием данного вещества отличаются грибы [20].
- Внутренние органы и ткани животного происхождения увеличивают интенсивность абсорбции железа до 5 раз. Эффективность увеличения сильно варьирует в зависимости от выбора вида мяса [19], [21].
Ингибиторы абсорбции
"Ингибитор" — полный антоним термина " стимулятор", ингибиторы снижают интенсивность абсорбции. В природе их существует огромное множество, но почему? Дело в том, что в основном это продукты вторичного метаболизма растений. Это значит, что растения не используют эти соединения для своего основного метаболизма и просто накапливают их, например для защиты от поедания. Животное, которое будет есть растение, будет потреблять и эти " защитные яды", вызывающие у него какой-то негативный эффект. Растительноядное поймет, что что-то не так, и перестанет есть это растение или просто умрет. Вернемся к ингибиторам:- Полифенолы. Эти соединения содержится в больших количествах в продуктах растительного происхождения, таких как какао, чай, кофе, красное вино, зерновые культуры, шпинат и в других овощах и зелени [22]. Наибольший эффект наблюдается при употреблении в пищу двух самых известных горячих напитков. Одна чашка кофе уменьшает эффективность усвоения негемового железа из мяса на 39%, а тот же объем чая — уже на 64% [23]. Эту особенность можно связать с тем, что в чае содержится особый вид полифенолов — флавоноиды, который обладает способностью к связыванию молекул железа [24], тем самым уменьшая растворимость микроэлемента [23]. В связи с этим людям, подверженным риску развития дефицита железа, рекомендуют воздержаться от чая во время приемов пищи и пить его только между ними [22].
- Фитаты. Производные фитиновой кислоты не усваиваются животными с простым однокамерным желудком, в том числе и человеком. Фитаты в основном содержатся в злаках, семенах, орехах, овощах и фруктах [22]. Употребление этих соединений вызывает довольно сильное ингибирование абсорбции, например, добавление отрубей при употреблении мяса снижает эффективность усвоения негемового железа с 39,6% до 8,8% [25]. Интересно и то, что в данном случае нельзя говорить о концентрационной зависимости, так как даже небольшого количества фитата достаточного для значительного эффекта. Только при концентрации кислоты менее 0,3 мг/г наблюдается заметное увеличение абсорбции [26].
- Кальций. Соли кальция также оказывают ингибирующий эффект, однако этот эффект уникален: в отличие от большинства ингибиторов кальций не специфичен к виду абсорбируемого железа. Это значит, что он в равной степени уменьшает всасывание как негемового, так и гемового железа. Эффект наблюдается только при одновременном наличии кальция и железа в просвете верхнего отдела тонкой кишки, а также при голодании человека [27].
Транспорт
После поступления железа в энтероцит оно должно стать доступным каждой клетке тела, и в организме подобный транспорт осуществляется по кровотоку. Для реализации этой несложной махинации клетке кишечника нужно просто выбросить железо в кровь. На базолатеральной стороне энтероцита находится транспортер двухвалентного железа, называемый ферропортином, который и поставляет ионы в кровоток. Сразу после выхода из клетки мембраносвязанная ферроксидаза гефестин окисляет Fe2+ до Fe3+ [3]. Одной из возможных причин этого преобразования может быть разграничение пулов транспортируемого (3+) и используемого в клетке (2+) железа.

- Большинство железа идет на эритропоэз в красном костном мозге, который использует исключительно Tf-железо [16]. Другие органы и ткани также используют Tf-железо в своих целях.
- Оставшаяся четверть железа запасается в организме, из которого почти 17% отправляется на хранение в печень [30].
Хранение в печени
Трансферрин путешествует по кровотоку в компании двух молекул трехвалентного железа. Его распознавание клетками печени, гепатоцитами, происходит с помощью мембранных белков — трансферриновых рецепторов ( TfR) (см. рис. 4). На месте связывания Тf образуется везикула, и белок-рецепторный комплекс попадает внутрь клетки. Протонный насос подкисляет ионами H+ среду эндосомы до pH 5,5, и молекулы железа отходят от трансферрина, который в свою очередь остается связанным с рецептором. Fe3+ восстанавливается до Fe2+ с помощью металлоредуктазы STEAP3 ( S ix Transmembrane Epithelial Antigen of the Prostate proteins 3) и в таком виде выходит из везикулы с помощью уже известного нам транспортера двухвалентных металлов DMT-1 [3], [31]. Трансферрин же в своей апо-форме отсоединяется от TfR и экзоцитируется из гепатоцита в кровоток, а рецептор возвращается на мембрану клетки. Трехвалентное железо запасается в белковом комплексе — ферритине. При недостатке микроэлемента в крови гепатоциты начинают разрушать этот белок в лизосомах, высвобождают железо и секретируют его в кровь по схожему с энтероцитами механизму.
- Трансферрин со связанными молекулами железа активирует трансферриновые рецепторы (TfR) на мембране клетки. Комплекс рецептор-трансферрин поглощается клеткой с образованием эндосомы.
- Изменение pH внутри эндосомы приводит к отщеплению молекул Fe3+ с их последующим восстановлением STEAP3 и поглощением DMT1.
- Полученное двухвалентное железо либо может быть окислено и храниться в качестве составной части ферритина.
- Либо может быть функционально использовано клеткой.
Регуляция метаболизма
Весь человеческий организм работает в синергии. Его структурные части общаются друг с другом совершенно на разных уровнях: органы говорят с органами, клетки — с клетками. И для этого есть инструменты. Первое что приходит в голову — сигнальные молекулы, которые и правда являются основным способом коммуникации в организме. Самым популярным видом таких молекул в организме человека можно назвать гормоны, через них организм контролирует огромное количество физиологических процессов, и метаболизм железа в том числе. Делает он это с помощью пептида гепсидина, секретируемого печенью. Ферропортин — единственный экспортер неорганического железа в теле млекопитающих. Гепсидин вызывает его инактивацию или даже уничтожение на макрофагах, энтероцитах, гепатоцитах и других клетках тела [16]. Поэтому гепсидин является главным регулятором содержания железа в крови, с помощью которого организм изменяет доступность железа для тканей и регулирует скорость эритропоэза [7]. Заболевания с малым содержание гемоглобина в крови, например, анемия и гипоксия, ингибируют синтез гепсидина еще на уровне мРНК в гепатоцитах. Результатом становится повышение общего уровня железа в организме, что в свою очередь стимулирует синтез гемоглобина [32]. Многие органы поддерживают постоянный уровень железа в крови через стимуляцию выброса железа печенью и его поглощения в тонкой кишке. Например, так делает красный костный мозг, так как ему необходимы ресурсы для самого затратного по железу процесса в организме — эритропоэза [15].Послесловие
Итак, теперь вы знаете почти все об этом сложном микроэлементе. Надеюсь, вся та теоретическая информация о метаболизме железа, его регуляции в организме, разных нормах и рекомендациях, которая была преподнесена в этой статье, поможет вам легко воспринять следующую часть. В ней речь пойдет о практике. Мы разберем все необходимые аспекты прикладной медицины, с которыми врач сталкивается при диагностике железосвязанных заболеваний. Если говорить конкретнее, то предметами обсуждения станут методы измерения содержания железа в организме человека, нормы концентрации разных белков и, что самое главное, физиология таких болезней и способы их диагностики.Литература
- /articles/nemnogo-o-zheleze-praktika;
- Eva Bianconi, Allison Piovesan, Federica Facchin, Alina Beraudi, Raffaella Casadei, et. al.. (2013). An estimation of the number of cells in the human body. Annals of Human Biology. 40, 463-471;
- Gropper S. S. and Smith J. L. Advanced Nutrition and Human Metabolism (6th Edition). Mass: Cengage Learning, 2012. — 608 p.;
- Abbaspour N., Hurrell R. and Kelishadi R. (2014). Review on iron and its importance for human health. J. Res. Med. Sci.. 19, 164–174;
- Gao Q. Y., Zhu Y. M., Hu J., Guo J., Bao B. L., Zhao X. et al. (2019). [Red blood cell lifespan detected by endogenous carbon monoxide breath test in patients with polycythemia vera]. Zhonghua Nei Ke Za Zhi. 58, 777–781;
- Ye L., Guo J., Jing L. P., Peng G. X., Zhou K., Li Y. et al. (2018). [The life span of red blood cell in patients with severe/very severe aplastic anemia]. Zhonghua Xueyexue Zazhi. 39, 137–142;
- Sophie Waldvogel-Abramowski, Gérard Waeber, Christoph Gassner, Andreas Buser, Beat M. Frey, et. al.. (2014). Physiology of Iron Metabolism. Transfus Med Hemother. 41, 213-221;
- Catherine Geissler, Mamta Singh. (2011). Iron, Meat and Health. Nutrients. 3, 283-316;
- Sean Lynch, Christine M Pfeiffer, Michael K Georgieff, Gary Brittenham, Susan Fairweather-Tait, et. al.. (2018). Biomarkers of Nutrition for Development (BOND)—Iron Review. The Journal of Nutrition. 148, 1001S-1067S;
- Bhuvaneswari S., Joshi M. and D'Souza A. (2015). Quantitative Analysis of Iron and Ascorbic acid contents in locally consumed Fruits and Vegetables. International Research Journal of Biological Sciences. 4, 42–47;
- J. Falandysz. (1991). Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. Food Additives and Contaminants. 8, 71-83;
- J D Cook, E R Monsen. (1976). Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption. The American Journal of Clinical Nutrition. 29, 859-867;
- DeMaeyer E.M. (1989). Nutrition,Preventing and controlling Iron Deficiency Anemia. WHO ;
- Mateusz Buzała, Bogdan Janicki, Mateusz Buzała, Artur Słomka. (2015). Heme iron in meat as the main source of iron in the human diet. J. Elem.;
- Nancy C. Andrews. (1999). Disorders of Iron Metabolism. N Engl J Med. 341, 1986-1995;
- Jian Wang, Kostas Pantopoulos. (2011). Regulation of cellular iron metabolism. Biochemical Journal. 434, 365-381;
- Teucher, Olivares, Cori. (2004). Enhancers of Iron Absorption: Ascorbic Acid and other Organic Acids. International Journal for Vitamin and Nutrition Research. 74, 403-419;
- Yum Hashim, Bioprocess and Molecular Engineering Research Unit (BPMERU), Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. BOX 10, Kuala Lumpur, 50728, Malaysia, Nur Ismail, Parveen Jamal, Rashidi Othman, Hamzah Salleh. (2014). Production of Cysteine: Approaches, Challenges and Potential Solution. Int. J. Biotech. Well. Indus.. 3, 95-101;
- Miguel Layrisse, Carlos Martínez-Torres, Irene Leets, Peter Taylor, José Ramírez. (1984). Effect of Histidine, Cysteine, Glutathione or Beef on Iron Absorption in Humans. The Journal of Nutrition. 114, 217-223;
- Michael D. Kalaras, John P. Richie, Ana Calcagnotto, Robert B. Beelman. (2017). Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry. 233, 429-433;
- J D Cook, E R Monsen. (1975). Food iron absorption. I. Use of semisynthetic diet to study absorption of nonheme iron. The American Journal of Clinical Nutrition. 28, 1289-1295;
- Itske M. Zijp, Onno Korver, Lilian B. M. Tijburg. (2000). Effect of Tea and Other Dietary Factors on Iron Absorption. Critical Reviews in Food Science and Nutrition. 40, 371-398;
- T A Morck, S R Lynch, J D Cook. (1983). Inhibition of food iron absorption by coffee. The American Journal of Clinical Nutrition. 37, 416-420;
- P B Disler, S R Lynch, R W Charlton, J D Torrance, T H Bothwell, et. al.. (1975). The effect of tea on iron absorption.. Gut. 16, 193-200;
- L Hallberg, L Rossander, A B Skånberg. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. The American Journal of Clinical Nutrition. 45, 988-996;
- R F Hurrell, M A Juillerat, M B Reddy, S R Lynch, S A Dassenko, J D Cook. (1992). Soy protein, phytate, and iron absorption in humans. The American Journal of Clinical Nutrition. 56, 573-578;
- Sean R Lynch. (2000). The effect of calcium on iron absorption. Nutr. Res. Rev.. 13, 141-158;
- Kimihiko Mizutani, Mayuko Toyoda, Bunzo Mikami. (2012). X-ray structures of transferrins and related proteins. Biochimica et Biophysica Acta (BBA) - General Subjects. 1820, 203-211;
- Sargent B. (2016). Pumping Iron – But Not in the gym: The Critical Roles of Transferrin in Cell Culture Media. Cell Culture Dish;
- Ferritin. (2010). Ilex Medical;
- Kostas Pantopoulos, Suheel Kumar Porwal, Alan Tartakoff, L. Devireddy. (2012). Mechanisms of Mammalian Iron Homeostasis. Biochemistry. 51, 5705-5724;
- Tomas Ganz. (2003). Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 102, 783-788.